Effect of Thermal Neutron Irradiation of CoLa, Fe_{2-x}O Nanoferrites: XRD, FTIR, UV, VSM, and ESR Spectroscopy By Kh. Roumaih¹, H A Aboelkhir¹, T M Meaz², and A I Ghoneim² ¹ Reactor Physics Department, Egyptian Atomic Energy Authority, Egypt. ²Physics Department, Faculty of Science, Tanta Universit Tanta, Egypt.

Introduction

Over the years, spinel ferrites have attracted considerable research interest due to their wide range of applications in many areas of the technological and medical industries. **Among the spinel ferrite, cobalt ferrite is hard** magnetic material, which has a cubic spinel structure with excellent magnetic, electrical property and chemical stability, has been extensively used for various technological

application.

Neutron irradiation can be a powerful tool to increase crystallographic defects to modify the structural, electrical, and magnetic properties.

Aim of work

This work studies the effect of different doses of thermal neutron on $CoLa_xFe_{2-x}O_4$ (x= 0, and 0.06) to increase crystallographic defects to modify the structural, and magnetic properties of ferrites.

Synthesis

Results and discussion

X-Ray Measurements

Dose	a(Å)	R(nm)	δ(nm ⁻²)
0	8.35913	23.66	1.876*10 ⁻³
11.5	8.35780	23.574	1.799*10 ⁻³
23	8.33089	23.573	1.799*10 ⁻³
34.5	8.31908	17.918	3.115*10-3

Bulk cobalt ferrite has perfect spinel structure with equal distribution of Fe³⁺ ions on both A-site (octahedral site) and B-site (tetrahedral site), $(Fe_1)[Co Fe]O_4$ but in nanometer scale it is in mixed spinel state $(Co_{v}Fe_{1-v})[Co_{1-v}Fe_{1+v}]O_{4}$

Co(II)	4-coordinate, tetrahedral	0.72
Co(II)	6-coordinate, octahedral	0.79
Co(II)	6-coordinate, octahedral, high spin	0.885
Co(III)	6-coordinate, octahedral	0.685
Co(III)	6-coordinate, octahedral, high spin	0.75
Fe(II)	6-coordinate, octahedral, low spin	0.61
	6-coordinate, octahedral, high spin	0.78
	8-coordinate, octahedral, high spin	0.92
	6-coordinate, octahedral, low spin	0.55

So, the effect of radiation on the compound CoLa, Fe_{2,v}O₄ (x= 0, and 0.06) is the shrinkage of the unit cell, as a result of the cobalt ion changing valence from di- to tri-.

FT-IR Measurements

FT-IR

The force constant of $CoFe_2O_4$ and $CoLa_{0.06}Fe_{1.94}O_4$ nanoparticles at different doses

FT-IR

The dose dependence of: (a) mean velocity of elastic waves (V_m) , (b) The Debye temperature (θ_D) , (c) The lattice energy (U) for $CoFe_2O_4$ and $CoLa_{0.06}Fe_{1.94}O_4$ nano-ferrites.

FT-IR

Dose dependence of different elastic parameters of $C_0Fe_2O_4$ and $C_0La_{0.06}Fe_{1.94}O_4$ nano-ferrites (a) Bulk modulus (B) ,(b) Young's modulus (E) and (c) rigidity modulus (G).

UV-Vis Spectra

Variation of αhv^2 with photon energy (hv)of as-fabricated Co Fe_2O_4 nanoferrites samples after irradiation

Variation of $\alpha h \mu^2$ with photon energy (hµ)of asfabricated CoLa_{0.06}Fe_{1.94}O₄ nano-ferrites samples after irradiation.

UV–Vis Spectra

	X=0			X=0.06			
Sample	11.5	23	34.5	11.5	23	34.5	
	Gray	Gray	Gray	Gray	Gray	Gray	
Energy gap (eV)	1.337	1.349	1.352	1.366	1.377	1.393	

VSM measurements of CoFe₂O₄

VSM measurements of CoFe_{1.94}La_{0.06}O₄

VSM Results

	Co Fe ₂ O ₄				CoLa _{0.06} Fe _{1.94} O ₄			
Dose	0	11.5	23	34.5	0	11.5	23	34.5
H _{ci} (G)	899.7	789.21	859.4	189.8	1327	1344	1225.4	1236.7
M _r (emu/g)	19.05	21.239	21.93	17.17	24.76	27.99	27.239	26.580
M _s emu/g)	53.82	62.629	64.40	63.27	53.91	60.91	59.545	58.905
$R^2 = M_p / M_s$	0.354	0.3391	0.341	0.272	0.461	0.461	0.4575	0.4513
(µ _B) _{obs}	2.261	2.6307	2.703	2.658	2.313	2.613	2.5546	2.5272

VSM Results

